Multi-Sensor Terrain Estimation for Planetary Rovers
نویسندگان
چکیده
Future planetary exploration missions will require rovers to perform difficult tasks in rough terrain, with limited human supervision. Knowledge of terrain physical characteristics would allow a rover to adapt its control and planning strategies to maximize its effectiveness. This paper describes recent and current work at MIT in the area of terrain estimation and sensing. A method for on-line terrain parameter estimation is presented. A complementary method for terrain traversability estimation is also presented. Sensor issues related to terrain estimation are discussed, and a vision-based method for measuring wheel sinkage is described. It is shown that these methods can lead to accurate and efficient understanding of a rover’s physical surroundings.
منابع مشابه
On-Line Terrain Parameter Estimation for Planetary Rovers
Future planetary exploration missions will require rovers to traverse very rough terrain with limited human supervision. Wheel-terrain interaction plays a critical role in rough-terrain mobility. In this paper an on-line estimation method that identifies key terrain parameters using on-board rover sensors is presented. These parameters can be used for accurate traversability prediction or in a ...
متن کاملVisual Motion Estimation and Terrain Modeling for Planetary Rovers
The next round of planetary missions will require increased autonomy to enable exploration rovers to travel great distances with limited aid from a human operator. For autonomous operations at this scale, localization and terrain modeling become key aspects of onboard rover functionality. Previous Mars rover missions have relied on odometric sensors such as wheel encoders and inertial measureme...
متن کاملImproved Traversal for Planetary Rovers through Forward Acquisition of Terrain Trafficability *
Current operations of planetary rovers, especially the planning and execution of traverse operations, rely on human analysis and estimation of non-geometric hazards based on images captured by the rover. Despite the use of advanced path planning algorithms capable of avoiding obstacles, this limits daily traverse distances. This paper presents a system concept for planetary rovers capable of sa...
متن کاملVision-based Terrain Classification and Classifier Fusion for Planetary Exploration Rovers
Autonomous rover operation plays a key role in planetary exploration missions. Rover systems require more and more autonomous capabilities to improve efficiency and robustness. Rover mobility is one of the critical components that can directly affect mission success. Knowledge of the physical properties of the terrain surrounding a planetary exploration rover can be used to allow a rover system...
متن کاملA study of visual and tactile terrain classification and classifier fusion for planetary exploration rovers
Knowledge of the physical properties of terrain surrounding a planetary exploration rover can be used to allow a rover system to fully exploit its mobility capabilities. Terrain classification methods provide semantic descriptions of the physical nature of a given terrain region. These descriptions can be associated with nominal numerical physical parameters, and/or nominal traversability estim...
متن کامل